The answer choice (E) NOTA means that 'none of these answers' are correct. All angles are in radians unless otherwise stated. For all matrices M with nonzero determinant, $M^{0}=I$. Good luck, and have fun!

1. Let α be an angle such that $\sin \alpha=\frac{7}{25}$. Evaluate $|\cos \alpha|$.
(A) $\frac{3}{5}$
(B) $\frac{18}{25}$
(C) $\frac{21}{25}$
(D) $\frac{24}{25}$
(E) NOTA
2. Find the absolute value of z if $z=|3+4 i|+12 i$.
(A) 3
(B) 5
(C) 13
(D) $\sqrt{265}$
(E) NOTA
3. Find $\vec{v} \cdot(\vec{u} \times \vec{w})$ if $\vec{v}=\langle 2,1,2\rangle, \vec{u}=\langle-1,4,5\rangle$, and $\vec{w}=\langle-2,-1,0\rangle$.
(A) 18
(B) -18
(C) $\langle 4,-4,0\rangle$
(D) $\langle 15,-10,9\rangle$
(E) NOTA
4. Find the number of petals on the graph of $r=\sin 3 \theta \cos 9 \theta+\cos 3 \theta \sin 3 \theta$.
(A) 3
(B) 6
(C) 12
(D) 24
(E) NOTA
5. Find the sum of the solutions to $\sin x+\sin 2 x+\sin 3 x=0$ where $x \in[0,2 \pi)$.
(A) 2π
(B) 3π
(C) 4π
(D) 5π
(E) NOTA
6. Let $q(x)$ be a quadratic function such that $q(20)=q(18)=2018$ and $q(22)=q(16)=2002$. Find $q(21)$.
(A) 2008
(B) 2010
(C) 2012
(D) 2015
(E) NOTA

For the following three questions, consider the two sets of parametric equations below when graphed in the same plane. They form a single, closed figure.

$$
\begin{array}{ll}
x_{1}(t)=|\cos (\pi t)| & y_{1}(t)=|\sin (\pi t)| \\
x_{2}(t)=\cos ^{2}(\pi t) & y_{2}(t)=\sin ^{2}(\pi t)
\end{array}
$$

7. What is the perimeter of the figure?
(A) $\frac{\sqrt{2}}{2}+\frac{\pi}{4}$
(B) $\sqrt{2}+\frac{\pi}{4}$
(C) $\frac{\sqrt{2}}{2}+\frac{\pi}{2}$
(D) $\sqrt{2}+\frac{\pi}{2}$
(E) NOTA
8. What is the area contained by the figure?
(A) $\frac{\pi}{4}-\frac{1}{2}$
(B) $\frac{\pi}{4}-1$
(C) $\frac{\pi}{2}-\frac{1}{2}$
(D) $\frac{\pi}{2}-1$
(E) NOTA
9. If t represents time in seconds, how many seconds does it take to draw the figure once, starting at $t=0$?
(A) 0.25
(B) 0.5
(C) 1
(D) 2
(E) NOTA
10. Connor and Arnav are writing a math test together (not this one). The probability that one of Arnav's problems can be solved using mass points is 1%. Connor likes mass points a lot more, so the probability that one of his problems can be solved using mass points is 10%. What fraction of the problems should Connor write such that the average probability that a question can be solved using mass points is 4% ?
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{5}$
(D) $\frac{1}{2}$
(E) NOTA
11. Evaluate $\cos \left(\frac{\pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right)+\cos \left(\frac{5 \pi}{11}\right)+\cos \left(\frac{7 \pi}{11}\right)+\cos \left(\frac{9 \pi}{11}\right)$.
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 1
(E) NOTA
12. In $\triangle A B C$, let D be on $\overline{A B}$ such that $\angle B C D$ is a right angle. If $B C=3, B D=6$, and $A D=2$, find $A C$.
(A) $3 \sqrt{3}$
(B) 6
(C) $4 \sqrt{3}$
(D) 7
(E) NOTA
13. Let x and y be real numbers such that $\tan x+\tan y=5$ and $\cot x+\cot y=10$. Compute $\tan (x+y)$.
(A) 5
(B) 10
(C) 15
(D) 20
(E) NOTA
14. Find the volume bounded by the graphs of $x^{2}+y^{2}=z^{2}$ and $z^{2}-3 z-18=0$ in $x y z$-space.
(A) 27π
(B) 81π
(C) 108π
(D) 243π
(E) NOTA
15. A function $f(x)=a \sin \theta+b$ exists such that the absolute value of the product of its minimum and maximum values (both integers) is 20 . Find the sum of all possible positive values of a.
(A) 14
(B) 21
(C) 28
(D) 35
(E) NOTA
16. Over a certain domain, (k, ∞), the function $g(x)=\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}$ is equivalent to another function of the form $\frac{a+\sqrt{b x+c}}{d}$, where a and d are relatively prime positive integers. Let $k_{\text {min }}$ be the smallest value of k such that this equivalence holds. Find $a+b+c+d+k_{\text {min }}$.
(A) 8
(B) 9
(C) 10
(D) 11
(E) NOTA
17. Let M and S_{c} be matrices such that

$$
M=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad S_{c}=\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]
$$

Let A be the sum of all non-negative integral values of K such that there exists a positive integer c such that the sum of the entries of $S_{c}\left(M^{K}\right)$ is 2018. Let B be the number of such values of K. Find $A+B$.
(A) 2017
(B) 2018
(C) 3025
(D) 3026
(E) NOTA
18. Let M be a 2018×2018 matrix such each element $M_{i j}$ is given by $M_{i j}=i+2018(j-1)$. Find the determinant of M.
(A) 2018
(B) 2018^{2}
(C) 2018 !
(D) 2018^{2018}
(E) NOTA
19. Let the roots of $x^{5}+x^{4}+x^{3}+x^{2}+x+1$ be the vertices of a polygon in the complex plane. Compute the area of this polygon.
(A) $\frac{13 \sqrt{3}}{12}$
(B) $\frac{7 \sqrt{3}}{6}$
(C) $\frac{5 \sqrt{3}}{4}$
(D) $\frac{3 \sqrt{3}}{2}$
(E) NOTA
20. Find the equation of the line that bisects the obtuse angle between the lines $3 x-4 y=7$ and $5 x+12 y=9$.
(A) $17 x+3 y=36$
(B) $11 x+4 y=23$
(C) $26 x+5 y=55$
(D) $8 x+y=17$
(E) NOTA
21. Two complex numbers z and w are chosen at random such that $|z|=|w|=1$. What is the probability that $\operatorname{Re}(z w)>0$ and $\operatorname{Re}\left(\frac{z}{w}\right)>0$?
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{3}{8}$
(D) $\frac{1}{2}$
(E) NOTA
22. If $\sum_{k=2}^{\infty} \frac{3 k+2}{k^{5}+4 k^{4}+5 k^{3}+2 k^{2}}=\frac{m}{n}$ where m and n are relatively prime positive integers, then compute the sum $m+n$.
(A) 3
(B) 7
(C) 13
(D) 17
(E) NOTA
23. Evaluate $\cos \left(\frac{\pi}{7}\right) \cos \left(\frac{2 \pi}{7}\right) \cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{\pi}{9}\right) \cos \left(\frac{2 \pi}{9}\right) \cos \left(\frac{4 \pi}{9}\right)$.
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
(E) NOTA
24. Evaluate $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}}+\frac{4}{n^{3}}+\frac{9}{n^{3}}+\frac{16}{n^{3}}+\frac{25}{n^{3}}+\ldots+\frac{n^{2}}{n^{3}}\right)$.
(A) 0
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
(E) NOTA

25 . Let M be a 2017×2017 matrix in which each element $M_{i j}$ is given by

$$
M_{i j}= \begin{cases}1 & \text { if } i+j=2018 \\ 0 & \text { if } i+j \neq 2018\end{cases}
$$

What is the smallest possible value of $n>1$ such that $M^{n}=M$?
(A) 2016
(B) 2017
(C) 2018
(D) 2019
(E) NOTA
26. Evaluate $\prod_{n=1}^{\infty} \cos \left(\frac{x}{2^{n}}\right)$ at $x=\frac{\pi}{6}$ (Hint: As x approaches $0, \sin x \approx x$).
(A) $\frac{3}{2 \pi}$
(B) $\frac{3}{\pi}$
(C) $\frac{6}{\pi}$
(D) $\frac{9}{\pi}$
(E) NOTA
27. Evaluate $\sum_{k=2}^{2018}\left(k^{\frac{k \pi i}{\ln \left(k^{2}\right)}}\right)$.
(A) -1
(B) $-1-i$
(C) $-i$
(D) 0
(E) NOTA
28. Let θ be a first quadrant angle such that

$$
\cos \theta=\frac{\overbrace{\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}}^{2}}{20182 \mathrm{~s}}
$$

If θ can be expressed as $\frac{\pi}{k}$ for positive integer k, evaluate $\left\lfloor\log _{2}(k)\right\rfloor$, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. (The 20182 s does not include the denominator)
(A) 2017
(B) 2018
(C) 2019
(D) 2020
(E) NOTA
29. An infinite amount of boxes with masses $1,2,3, \ldots$ are arranged in a line. Alex is going to pick up exactly one box; however, he doesn't want to carry anything too heavy, so the probability of him choosing the box with mass m is directly proportional to $\frac{1}{m^{3}}$. If

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

What is the expected mass of the box he picks up?
(A) 1
(B) $\frac{\zeta(1)}{\zeta(2)}$
(C) $\frac{\zeta(2)}{\zeta(3)}$
(D) $\frac{\zeta(3)}{\zeta(4)}$
(E) NOTA
30. Find the absolute value of

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left|\begin{array}{cc}
\cos \frac{2 \pi k}{n} & \sin \frac{2 \pi k}{n} \\
\cos \frac{2 \pi(k+1)}{n} & \sin \frac{2 \pi(k+1)}{n}
\end{array}\right|
$$

(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) π
(D) 2π
(E) NOTA

