Remember, the choice NOTA means "None of the Aforementioned". For all questions, all numbers are assumed to be real unless indicated and $i = \sqrt{-1}$. Good luck and have fun!

1.	Compute $\frac{4+5\cdot 6+}{}$	91 - 285 + 2018					
	5 3 P 3 1	2					
	(A) 907	(B) 913	(C) 926	(D) 929	(E) NOTA		
2.	What is the degree of the monomial $x^7y^3z^9(x^5y^7z^3)^2$?						
	(A) 30	(B) 36	(C) 46	(D) 49	(E) NOTA		
3.	Simplify $\frac{6}{5+i}$.						
	(A) $\frac{15-3i}{13}$	(B) $\frac{5-i}{4}$	(C) $\frac{30-6i}{23}$	(D) $\frac{30-i}{24}$	(E) NOTA		
4.	There exists a function $f(x)$. What is the real value of $f^{-1}(4099)$, if $f(x) = 8x^3 + 3$?						
	(A) -8	(B) 8	(C) 16	(D) 64	(E) NOTA		
5.	Ritam bikes to school at an average speed of 25 mph on Monday, making him 5 minutes early. He bikes to school at an average speed of 20 mph on Tuesday, making him 5 minutes late. At what average speed, in miles per hour, must Ritam bike on Wednesday in order to get to school on time, given he travels the same distance each day? Express your answer as a decimal to the nearest tenth.						
	(A) 22.2	(B) 22.3	(C) 22.4	(D) 22.5	(E) NOTA		
6.	Given that $\ln 15 = x$	c , what is e^{x+5} ?					
	(A) e^{20}	(B) $15e^5$	(C) 75	(D) 759375	(E) NOTA		
7.	Solve the inequality	$\frac{x^2 - 8x + 12}{x - 6} \ge 0$. Exp	oress your answer in	interval notation.			
	(A) $[2, \infty)$ (D) $(2, 6) \cup (6, \infty)$		(B) $(-\infty, 2]$ (C) [2, (E) NOTA		$(6) \cup (6, \infty)$		
8.	Let $f(x) = 7x + 16$ $[f(x)]^{-1} = f^{-1}(x)$?	. What is the sum	of the possible value	ues of x that satisfy	the equation		
	(A) $\frac{24}{7}$	(B) $\frac{48}{7}$	(C) -8	(D) $-\frac{96}{7}$	(E) NOTA		
9.	x varies directly with y^5 and inversely with $\sqrt[3]{z}$. If $y=2$ and $z=27$ when x is 11, then what is x when $y=3$ and $z=8$?						
	(A) $\frac{22}{3}$	(B) $\frac{8019}{64}$	(C) $\frac{1317}{32}$	(D) $\frac{11}{6}$	(E) NOTA		
10.	Solve:	(D) 275	$\begin{vmatrix} 25 & 75 \\ -4 & -5 \end{vmatrix}$	(D) 495	(F) NOTA		
	(A) 1855	(B) 275	(C) 175	(D) -425	(E) NOTA		

(A) $10i\sqrt{37}$

i. f(x) = 2x + 4iii. $f(x) = e^x$

(A) i, iii, and iv

(C) $20\sqrt{10}$

(D) $10\sqrt{65}$

ii. $f(x) = x^2 - 4x + 3$

iv. $x = e^{\pi}$

(C) i and iii only (D) i, ii, and iii

11. What is the distance between 5 + 10i and -15 + 70i in the complex plane?

(B) $20i\sqrt{17}$

(B) i only

12. Which of the following equations, when graphed, are invertible?

(E) NOTA

(E) NOTA

13. Let $\log 2 = a$, $\log 5 = b$, and $\log 7 = c$. What is $10^{4a+2b+3c}$?								
	(A) 3900	(B) 4200	(C) 7800	(D) 8400	(E) NOTA			
14.	14. How many terms are in the expansion of $(2x - 3y + 5z)^5$?							
	(A) 35	(B) 28	(C) 21	(D) 14	(E) NOTA			
15.	15. Find how many positive integer triples (a, b, c) satisfy the equation:							
$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$								
	(A) 3	(B) 6	(C) 10	(D) 15	(E) NOTA			
16.	How many of the fe	ollowing functions a	re rational?					
	i. $f(x) = 1$	ii. f	(x) = x	iii. $f(x) =$	$\frac{2^x}{x}$			
	iv. $f(x) = \frac{\log(x)}{x-1}$	v. <i>f</i> ($f(x) = x$ $f(x) = \frac{x^2 - 5x + 7}{7x - 9}$	vi. $f(x) =$	$\frac{x^{0.5}}{2x-1}$			
	(A) 2	(B) 3	(C) 4	(D) 5	(E) NOTA			
17.	Find the sum of the $95x^5 - 96x^4 + 97x^3$			gree polynomial,				
	(A) $\frac{19}{20}$	$3 - 98x^2 + 99x - 100$ (B) $\frac{97}{99}$	(C) $\frac{95}{96}$	(D) $\frac{99}{100}$	(E) NOTA			
18. Find the remainder when $x^{99} + 1$ is divided by $x^2 - 2x + 1$.								
	(A) $99x - 97$	(B) $99x - 98$	(C) $1 - x$	(D) 0	(E) NOTA			
19. Evaluate $x+y$, if x is the sum of the digits and y is the number of digits in the number resulted from the operation: $\prod_{n=1}^{10} n \cdot \sum_{n=1}^{10} 2n - 1$								
	(A) 20	(B) 32	(C) 36	(D) 44	(E) NOTA			
20. What is the shortest distance, in units, between the point $(3, -4, 12)$ and the plane defined by the equation $10x - 6y - 15z = -49$?								
	(A) 4	(B) $\frac{77}{19}$	(C) $\frac{77}{13}$	(D) 6	(E) NOTA			

21. What is the greatest integer less than or equal to								
$\ln(2018^{rac{2018}{\ln 2018}})?$								
	(A) 2016	(B) 2017	(C) 2018	(D) 2019	(E) NOTA			
22.	22. What is the term below that is defined by the equation $25x^2 + 4y^2 + 200x - 32y = -64$?							
	(A) Hyperbola	(B) Parabola	(C) Ellipse	(D) Circle	(E) NOTA			
23.	23. What is the equation of the directrix of the graph of $y = \frac{1}{4}x^2 - 3x + 25$?							
	(A) $y = 15$	(B) $y = 12$	(C) $x = 15$	(D) $x = 12$	(E) NOTA			
	For questions 24 and 25, let M represent a non-degenerate conic section with the equation $16x^2 - 9y^2 + 160x - 90y = -751$.							
24.	What is the distance	ce, in units, between	the foci of the grap	oh of M ?				
	(A) 5	(B) 10	(C) 16	(D) 20	(E) NOTA			
25.	5. What is the eccentricity of the graph of M ?							
	(A) 0	(B) $\frac{\sqrt{7}}{4}$	(C) 1	(D) $\frac{5}{4}$	(E) NOTA			
26.	26. Define the <i>product root</i> of a number to be a calculation done by simply taking the product of its digits until it is a one-digit number. For example, the product root of 2117 is 4, as $2 \cdot 1 \cdot 1 \cdot 7 = 14$ and $1 \cdot 4 = 4$. Let $p(n)$ represent the product root of a number n . Find the value of: $\sum_{n=1}^{50} p(n)$							
	(A) 177	(B) 225	(C) 330	(D) 351	(E) NOTA			
27.	. If $x + \frac{1}{x} = 3$, then $x^7 + \frac{1}{x^7} = K$ for an integer K. Compute the sum of the digits of K.							
	(A) 14	(B) 15	(C) 16	(D) 17	(E) NOTA			
28.	Let α , β , and μ be the roots of $x^3 - 5x^2 + 3x + 7$. If $(\alpha^2 + 1)(\beta^2 + 1)(\mu^2 + 1)$ can be written in the form $a + bi$ for rational numbers a and b , then compute $a + b$.							
	(A) 104	(B) 128	(C) 152	(D) 176	(E) NOTA			
29.	1. If the sum of the magnitudes of the solutions to the equation $(x+1)(x+2)(x+3)(x+4)=8$ can be written in the form $\sqrt{A}+\sqrt{B}$ where A and B are positive integers, compute $A+B$.							
	(A) 49	(B) 65	(C) 84	(D) 101	(E) NOTA			
30.	Evaluate:	$\frac{1}{\log_5 49}$	$\cdot \frac{1}{\log_6 3125} \div \frac{\log_7 2}{2}$	16				
	(A) $\frac{4\log^2 7}{3\log^2 6}$	(B) $\frac{7}{30}$	(C) $\frac{1}{5}$	(D) $\frac{1}{15}$	(E) NOTA			